(a) Find the differential of the the function, y = ln(sin(x)) in its simplest form and (b) find the stationary point of the curve in the range 0 < x < 4.

a)For any function y = f(g(x)) the differential will take the form dy/dx = g'(x)f'(g(x)).(This is because of the chain rule,y = f(u), u = g(x)dy/du = f'(u), du/dx = g'(x)hence dy/dx = dy/du * du/dx = g'(x)f'(g(x)) )So for the equation y = ln(sin(x)) where f(u) = ln(u) and g(x) = sin(x). So using the formula above, dy/dx = cos(x)/sin(x) = 1/tan(x)b)Stationary point occurs when dy/dx = 0, so 1/tan(x) = 0,tan(x) = infinity,thinking about the graph of tan(x) it has a discontinuity at pi/2 where it's value tends to infinity, hence x = pi/2

DB
Answered by David B. Maths tutor

5006 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A stone, of mass m , falls vertically downwards under gravity through still water. The initial speed of the stone is u . Find an expression for v at time t .


If a circle passes through points (2,0) and (10,0) and it has tangent line along the y-axis, then what are the possible equations of the circle?


Solve the equation |3x +4a| = 5a where a is a positive constant.


A medical test will be positive for 0.05% of people and negative for everyone else. Suppose a hospital will test 4000 patients each day. Use an appropriate approximation to find the probability that 5 people test positive tomorrow. (5SF)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning