(a) Find the differential of the the function, y = ln(sin(x)) in its simplest form and (b) find the stationary point of the curve in the range 0 < x < 4.

a)For any function y = f(g(x)) the differential will take the form dy/dx = g'(x)f'(g(x)).(This is because of the chain rule,y = f(u), u = g(x)dy/du = f'(u), du/dx = g'(x)hence dy/dx = dy/du * du/dx = g'(x)f'(g(x)) )So for the equation y = ln(sin(x)) where f(u) = ln(u) and g(x) = sin(x). So using the formula above, dy/dx = cos(x)/sin(x) = 1/tan(x)b)Stationary point occurs when dy/dx = 0, so 1/tan(x) = 0,tan(x) = infinity,thinking about the graph of tan(x) it has a discontinuity at pi/2 where it's value tends to infinity, hence x = pi/2

DB
Answered by David B. Maths tutor

4468 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When and how do I use integration by parts?


The line AB has equation 5x + 3y + 3 = 0 . (a) The line AB is parallel to the line with equation y = mx + 7 . Find the value of m. [2 marks] (b) The line AB intersects the line with equation 3x -2y + 17 = 0 at the point B. Find the coordinates of B.


Consider the curve y=x/(x+4)^0.5. (i) Show that the derivative of the curve is given by dy/dx= (x+8)/2(x+4)^3/2 and (ii) hence find the coordinates of the intersection between the left vertical asymptote and the line tangent to the curve at the origin.


Find the first derivative of r=sin(theta+sqrt[theta+1]) with respect to theta.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences