A curve has equation y = 7 - 2x^5. a) Find dy/dx. b) Find an equation for the tangent to the curve at the point where x=1.

a) The derivative dy/dx of the equation is: dy/dx = -10x4. If you don't remember this, revise Power Rule for derivatives.b) The equation of a line is given by y = mx + q. To find the tangent line at a point, we need: 1) Find the slope of the line by substituting that point in the equation of the derivative m = dy/dx (x=1) = -10. 2) Solve the system between the curve and the line at x=1 to find q. We find q=15. The equation of the line is therefore: y = -10x + 15

GC
Answered by Gianpiero C. Maths tutor

6662 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solution to: ln(x) + ln(7) = ln(21)


Simplify and solve for x. log(x+1)+log 5=2. Note, log is the natural log in this case


Find the intergral of 2x^5 - 1/4x^3 - 5 with respect to x.


Solve sec(x)^2-2*tan(x)=4 for 0<=x<=360


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning