A curve has equation y = 7 - 2x^5. a) Find dy/dx. b) Find an equation for the tangent to the curve at the point where x=1.

a) The derivative dy/dx of the equation is: dy/dx = -10x4. If you don't remember this, revise Power Rule for derivatives.b) The equation of a line is given by y = mx + q. To find the tangent line at a point, we need: 1) Find the slope of the line by substituting that point in the equation of the derivative m = dy/dx (x=1) = -10. 2) Solve the system between the curve and the line at x=1 to find q. We find q=15. The equation of the line is therefore: y = -10x + 15

GC
Answered by Gianpiero C. Maths tutor

7421 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to solve a quadratic equation?


A ball of mass m moves towards a ball of mass km with speed u. The coefficient of restitution is 0. What is the final velocity if the first ball after the collision.


Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


Find the equation of the normal to the curve x^3 + 2(x^2)y = y^3 + 15 at the point (2, 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning