Solve the following set of simultaneous equations: (eq.1) x + 3y = 10, (eq.2) 2x + y = 5

Firstly, multiply eq.1 by 2, to obtain: (eq.3) 2x + 6y = 20Next, subtract eq.2 from eq.3 to obtain: (eq.4) 5y = 15Next, divide eq.4 by 5 to obtain: y = 3Now substitute y = 3 into any of the previous equations, for example, using eq.2 we get: (eq.5) 2x + 3 = 5Now solve eq.5 by...subtracting 3 from both sides: 2x = 2dividing throughout by 2: x = 1Now we have our unique solution to the pair of simultaneous equations: x = 1, y = 3.We can check the solution works by substituting back into one of the first two equations, e.g. in eq.1: x + 3y = 1 + (3x3) = 1 + 9 = 10

JD
Answered by Joe D. Maths tutor

3489 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Emma has a digital photo. The photo has width 960 pixels and height 720 pixels. Write down the ratio of the width of the photo to the height of the photo. Give the ratio in its simplest form.


Find the points of intersection of the line y+x=8 and a circle with centre at (3,-2) and radius 5.


Expand 5a(a+3b)


at a shop in the US tax is added onto the price of an item at the till. this shop adds 5.7% of the items value to the total cost. if you buy a ball priced as $15, how much will you have to pay ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences