Finding the intersection of a two lines (curved and linear example)

Line 1: y = 2x + 2 Line 2: y = x2 - 1Firstly, intersection of two lines is the point at where the coordinates of both lines are the same. X1 = X2 and Y1 = Y2Therefore, that means we can exploit that fact and to find the point of intersection of line 1 substituting y of line 2 into line 1 ending up with: 2x + 2 = x2 -1We then need to rearrange so that it is in the normal format of a quadratic equation Ax2 + Bx + C = 0 x2 - 2x -3 = 0This means we can now take our normal approach of solving a quadratic equation by factoring. As the value of A is 1 it is a little bit simpler and we can use a trick of a+b = B and a*b = C to find our factors. (x - 3)(x + 1) = 0 therefore, x = 3 or x = -1substituting back into our simplest equation results in us finding the corresponding values of y. @ x = 3 y = 2(3) + 2 = 8 (3,8) @ x = -1 y = 2(-1) + 2 = 0 (-1,0)

FF
Answered by Fabio F. Maths tutor

2573 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the equation of the straight line joining points (-1, -4) and (2, 5)


Solve 5x-2=3x+11


How do I calculate the distance between two vectors?


There are 700 students in a high school. 10% of them play team sports. 36 students play football, and 22 students play both football and basketball. When choosing one student from the school, what is the probability of them playing basketball only?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences