Finding the intersection of a two lines (curved and linear example)

Line 1: y = 2x + 2 Line 2: y = x2 - 1Firstly, intersection of two lines is the point at where the coordinates of both lines are the same. X1 = X2 and Y1 = Y2Therefore, that means we can exploit that fact and to find the point of intersection of line 1 substituting y of line 2 into line 1 ending up with: 2x + 2 = x2 -1We then need to rearrange so that it is in the normal format of a quadratic equation Ax2 + Bx + C = 0 x2 - 2x -3 = 0This means we can now take our normal approach of solving a quadratic equation by factoring. As the value of A is 1 it is a little bit simpler and we can use a trick of a+b = B and a*b = C to find our factors. (x - 3)(x + 1) = 0 therefore, x = 3 or x = -1substituting back into our simplest equation results in us finding the corresponding values of y. @ x = 3 y = 2(3) + 2 = 8 (3,8) @ x = -1 y = 2(-1) + 2 = 0 (-1,0)

FF
Answered by Fabio F. Maths tutor

3382 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand 5a(a+3b)


5q^2.p^12/10(q.p^3)^2


Use BIDMAS to answer 2 + 7 x 10


A farmer has a garden shaped into an isosceles triangle. Its side is 7m. He needs to enclose the perimeter, using copper wires, in order to avoid undesirable incidents. Each meter of copper wire cost 2£. How much does he need to pay to secure his garden?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning