How do you find the acute angle between two intersecting lines whos equations are given in vector form?

For this question we first need to understand which angle it is we're calculating. When two lines intersect two pairs of equal and opposite angles are formed (4 angles total). We are looking to find the small of these two angle values.
To do this, we use the rearranged dot product formula. Only the direction parts of the line equations are needed - this is the part next to the scalar multiplier. We find the dot product of these two direction vectors as well as their magnitudes and then substitute these into the formula. Then we can use the inverse cosine function to give us the angle we're looking for.

Answered by Maths tutor

34852 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate (2x+1) / (3x^2 - 5)?


Find the integral between 4 and 1 of x^(3/2)-1 with respect to x


Solve the following inequality and shade the region to which it applies on a graph. 10x(squared) < 64x - 24


A curve has equation y = 6ln(x) + x^2 -8x + 3. Find the exact values of the stationary points.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences