Prove that the derivative of tan(x) is sec^2(x).

Let y = tan(x)

Recall the definition of tan(x) as sin(x)/cos(x)

Therefore y = sin(x)/cos(x)

Use the quotient rule, which states that for y = f(x)/g(x), dy/dx = (f'(x)g(x) - f(x)g'(x))/g2(x) with f(x) = sin(x) and g(x) = cos(x).

Recall the derivatives of sin(x) as cos(x) and cos(x) as -sin(x)

This gives:

dy/dx = (cos(x)*cos(x) + sin(x)*sin(x)) / cos2(x)

Recall the trigonometric identity sin2(x) + cos2(x) = 1

Therefore dy/dx = 1/cos2(x) = sec2(x)

QED

MG
Answered by Miriam G. Maths tutor

108780 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the centre and radius of the circle with the equation x^2 + y^2 - 8x - 6y - 20 = 0.


find the coordinates of the turning points of the curve y = 2x^4-4x^3+3, and determine the nature of these points


Simplify: 3l^2mn+nl^2m−5mn^2l+l^2nm+2n^2ml−mn^2


The polynomial f(x) is defined by f(x) = 18x^3 + 3x^2 + 28x + 12. Use the Factor Theorem to show that (3x+2) is a factor of f(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning