Prove that the derivative of tan(x) is sec^2(x).

Let y = tan(x)

Recall the definition of tan(x) as sin(x)/cos(x)

Therefore y = sin(x)/cos(x)

Use the quotient rule, which states that for y = f(x)/g(x), dy/dx = (f'(x)g(x) - f(x)g'(x))/g2(x) with f(x) = sin(x) and g(x) = cos(x).

Recall the derivatives of sin(x) as cos(x) and cos(x) as -sin(x)

This gives:

dy/dx = (cos(x)*cos(x) + sin(x)*sin(x)) / cos2(x)

Recall the trigonometric identity sin2(x) + cos2(x) = 1

Therefore dy/dx = 1/cos2(x) = sec2(x)

QED

MG
Answered by Miriam G. Maths tutor

111167 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

why does log a + log b = log (ab)


Find the area under the curve with equation y = 5x - 2x^2 - 2, bounded by the x-axis and the points at which the curve reach the x-axis.


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Solve the Equation: 2ln(x)−ln (7x)=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning