MYTUTOR SUBJECT ANSWERS

362 views

Find the values of x, where 0 < x < 360, such that x solves the equation: 8(tan[x])^2 – 5(sec[x])^2 = 7 + 4sec[x]

This question tests a variety of mathematical techniques and knowledge which is integral to A-level mathematics.

Note that the highest power of a variable function in the mentioned equation, is 2. It is therefore quite likely that we will have to solve a quadratic equation to find x. We know how to solve quadratic equations from GCSE. Therefore, if we can manipulate the equation such that we have only one trigonometric variable function, then we will be able to solve the problem.

We first notice that tan[x] = sin[x]/cos[x] and that sec[x] = 1/cos[x]

Hence the equation can be read as:

8(sin[x]/cos[x])- 5(1/cos[x])2 = 7 + 4(1/cos[x])

Solving a quadratic equation with fractions is always going to be a messy business. We notice that cos[x] is the denominator of several fractions in the equation. To get rid of the denominators, we times through by (cos[x])2:

8(sin[x])2 - 5 = 7(cos[x])+ 4cos[x]     {*}

This already looks easier to solve than the initial equation. If we could ensure that the only variable function was sin[x] or cos[x] then we could solve the equation as a quadratic! Recall that: 

(sin[x])2 + (cos[x])2 =1 
Therefore:
(sin[x])= 1 - (cos[x])2

Substituting this value into {*}, we find that:

8(1 - (cos[x])2) - 5 = 7(cos[x])+ 4cos[x] 

By rearranging appropriately, we get the quadratic equation:

15(cos[x])2 + 4cos[x] - 3 = 0                                                                               

Just as in GCSE, we find that this is equivalent to:

(3cos[x] - 1)(5cos[x] + 3) = 0
so 
(1) cos[x] = 1/3 or (2) cos[x] = -3/5

We consider cases (1) and (2) separately.

Case 1: cos[x] = 1/3

Using a calculator we see that x = cos-1[1/3] = 70.5 (to 1 decimal place). However we want every value of x such that 0 < x < 360.

Note that if cos[x] = y, then for any integer k:
x = 360k ± cos-1[y]
This is the general solution for cosine.

By using the general solution for cosine we see that 
x = 360 - cos-1[1/3] = 289.5 (to 1 decimal place)
is also a solution.

Case 2: cos[x] = -3/5

Using a calculator we see that x = cos-1[-3/5] = 126.9 (to 1 decimal place).
Using the general formula for cosine we see that 
x = 360 - cos-1[-3/5] = 233.1 (to 1 decimal place).
is also a solution in the interva 0 < x < 360.

Hence we see that the complete set of values of x which solve 8(tan[x])2 – 5(sec[x])2 = 7 + 4sec[x] in the range 0 < x < 360 is:

x = 70.5, 126.9, 233.1, 289.5

Note: In the answer we used the general solution for cosine. This may have to be justified. This can be explained intuitively with a graph of the cosine function. Graphs and diagrams are often extremely helpful in understanding and answering questions.


 


 

Osian S. GCSE Maths tutor, A Level Maths tutor, GCSE Further Mathemat...

6 months ago

Answered by Osian, an A Level Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

256 SUBJECT SPECIALISTS

£24 /hr

Osian S.

Degree: Mathematics (Masters) - Warwick University

Subjects offered: Maths, Further Mathematics

Maths
Further Mathematics

“Hi, I'm Osian, a Master's student at the University of Warwick. I've had fun with mathematics from a young age, and I hope to be able to instill this passion for mathematics in you, through my tutorials! Throughout my time at Warwick,...”

£20 /hr

James J.

Degree: Medicine (Bachelors) - Birmingham University

Subjects offered: Maths, Chemistry+ 2 more

Maths
Chemistry
Biology
-Medical School Preparation-

“I am a 2nd year medical student at the University of Birmingham. Having studied the sciences and maths all the way up to A-level, I am very experienced at being confused by different concepts. I know exactly how it feels to look at a ...”

£20 /hr

Guy P.

Degree: Mathematics (Masters) - Warwick University

Subjects offered: Maths, Further Mathematics + 2 more

Maths
Further Mathematics
.STEP.
.MAT.

“About:Hi. I am a 2nd Year Mathematics student at the University of Warwick. I achieved a comfortable First in Year 1 and have continued this trend into my second year. Even from an early age, I have had a burning passion to engage m...”

About the author

£24 /hr

Osian S.

Degree: Mathematics (Masters) - Warwick University

Subjects offered: Maths, Further Mathematics

Maths
Further Mathematics

“Hi, I'm Osian, a Master's student at the University of Warwick. I've had fun with mathematics from a young age, and I hope to be able to instill this passion for mathematics in you, through my tutorials! Throughout my time at Warwick,...”

You may also like...

Posts by Osian

Eleri invests £3700 for 3 years at 2% per annum compound interest. Calculate the value of her investment at the end of the 3 years. Give your answer correct to the nearest penny.

Find the values of x, where 0 < x < 360, such that x solves the equation: 8(tan[x])^2 – 5(sec[x])^2 = 7 + 4sec[x]

Other A Level Maths questions

given y=(1+x)^2, find dy/dx

What methods are there for integration?

What is Differentiation?

How do you find an angle in a right-angled triangle when you are given two of its side's lengths?

View A Level Maths tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok