Factorise fully 3*a^3*b +12*a^2*b^2 + 9*a^5*b^3

To factorise 3a3b + 12a2b2 + 9a5b3, we need to deal with like elements together.Start with the integers. The highest common factor of 3, 12, and 9 is 3. Therefore we factor out the 3 and the expression becomes3(a3b + 4a2b2 + 3a5b3)Next, deal with the a values. The highest common factor of a3, a2 and a5 is a2. So, we factor out a2and the expression becomes3a2(ab + 4b2 + 3a3b3)Finally, we need to factorise the b values. The highest common factor of b, b2 and bis b. So we factor out b and the expression becomes.3a2b(a + 4b + 3a3b2). Therefore, the complete factorisation of 3a3b + 12a2b2 + 9a5bis 3a2b(a + 4b + 3a3b2).

MP
Answered by Melissa P. Maths tutor

4945 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Bhavin, Max and Imran share 6000 rupees in the ratios 2 : 3 : 7 Imran then gives 3/5 of his share of the money to Bhavin. What percentage of the 6000 rupees does Bhavin now have? Give your answer correct to the nearest whole number.


Find the nth term of the sequence 3,7,11,15...


Solve the simultaneous equations, x+y = 16, 5x -2y = 17


Solve the equation x^2-10x+21=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning