why does log a + log b = log (ab)

Let log a be some number A and log b be some number B

now the natural log of something is the equivalent of saying a=e^A and b = e^B

So a*b = e^A * e^B which by rules of indices

 = e^(A+B)

Therefore log(ab) = log(e^(A+B))

= A + B = log a + log b 

RV
Answered by Rebecca V. Maths tutor

5129 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation for the tangent to the curve y^3 + x^3 + 3x^2 + 2y + 8 = 0 at the point (2,1)


f(x) = (4x + 1)/(x - 2). Find f'(x)


What is a parametric equation?


What is a derivative?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning