why does log a + log b = log (ab)

Let log a be some number A and log b be some number B

now the natural log of something is the equivalent of saying a=e^A and b = e^B

So a*b = e^A * e^B which by rules of indices

 = e^(A+B)

Therefore log(ab) = log(e^(A+B))

= A + B = log a + log b 

RV
Answered by Rebecca V. Maths tutor

5490 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you solve the inequality x^2-2x-8 >= 0?


Given that f(x)= (3+x^2)(x^1/2-7x). Find f'(x) (5marks)


What is the difference between definite and indefinite integrals?


The volume of liquid in a container is given by v=(3h^2+4)^(3/2)-8, find dV/dh when h = 0.6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning