why does log a + log b = log (ab)

Let log a be some number A and log b be some number B

now the natural log of something is the equivalent of saying a=e^A and b = e^B

So a*b = e^A * e^B which by rules of indices

 = e^(A+B)

Therefore log(ab) = log(e^(A+B))

= A + B = log a + log b 

RV
Answered by Rebecca V. Maths tutor

4780 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is Integration


Find the indefinite integral of Ln(x)


Define the derivative of a function f(x) and use this to calculate the derivative of f(x)=x^n for positive integer n.


Differentiate f(x) = (x+3)/(2x-5) using the quotient rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences