why does log a + log b = log (ab)

Let log a be some number A and log b be some number B

now the natural log of something is the equivalent of saying a=e^A and b = e^B

So a*b = e^A * e^B which by rules of indices

 = e^(A+B)

Therefore log(ab) = log(e^(A+B))

= A + B = log a + log b 

RV
Answered by Rebecca V. Maths tutor

5491 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you explain the product rule when differentiating?


A curve has equation y = 20x −x^2 −2x^3 . Find its stationary point(s).


Why is the derivative of x^2 equal to 2x?


Differentiate y= 2^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning