How do I do implicit differentiation?

The main thing to remember with implicit differentiation is to differentiate each thing as you see it. Don't worry about rearranging the equation until you have differentiated everything first. Say you have the question,

Differentiate x^2 + y^2 = 1 with respect to x.

Starting from the left, the differential of x^2 with respect to x is 2x. 

Next we have y^2. When we have a term that is not what we are differentiating with respect to (ie y is not x) then you differentiate the term as you would do normally but you have to put a dy/dx on the end. So the differential of y^2 with respect to x is 2y(dy/dx).

And of course the differential of 1 with respect to 1 is 0 (as is the case with any constant.)

This leaves us with a result of:

2x + 2y(dy/dx) = 0

Often this can be your final answer but if you are asked to make dy/dx the subject then you just rearrange the equation to make this the case.

If you do this correctly, you will find your answer to be dy/dx = - (x/y)

TH
Answered by Thomas H. Maths tutor

6844 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of mass M lies stationary on a rough plane inclined at an angle x to the horizontal. Find a general expression relating the coeffecient of friction between the block and the plane and the angle x. At what angle does the box begin to slide?


Use the substitution u=2+ln(t) to find the exact value of the antiderivative of 1/(t(2+ln(t))^2)dt between e and 1.


How do I differentiate implicitly?


Find the derivative of the following function with respect to x. y = 5e^x−2xsin(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning