Find the equation of the tangent to the curve y=x^3-4x^2+2 at the point (3,-7)

y=x3-4x2+2A tangent to a curve at a specific point along the line will have excatly the same gradient as the curve at that point. For example if the point was (0,0) the tangent would just be a horizontal line along the x-axis. To work out the gradient we simply differentiate the curve, set this to equal 0 and solve with the given value of x. Here dy/dx = 3x2-8xSetting this to 0 and solving gives us 3(3)2-8(3)=3 and so our gradient at the point (3,-7) is 3We are now able to use the equation y-y(1)=m(x-x(1)) where m is the gradient and x(1) & y(1) are the coordinates we've been given. Rearranging we get y=3(x-3)-7y=3x-16 and this is the equation of the tangent to the curve y=x3-4x2+2 at the point (3,-7)

DW
Answered by Daniel W. Maths tutor

23819 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If a ball is dropped from 6m above the ground, how long does it take to hit the floor and what is its speed at impact (assuming air resistance is negligible)?


Solve the differential equation: dy/dx = 6x^2 + 4x + 9


Prove the change of base formula for logarithms. That is, prove that log_a (x) = log_b (x) / log_b (a).


Example of product rule - if y=e^(3x-x^3), what are the coordinates of stationary points and what are their nature?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences