Find the equation of the tangent to the curve y=x^3-4x^2+2 at the point (3,-7)

y=x3-4x2+2A tangent to a curve at a specific point along the line will have excatly the same gradient as the curve at that point. For example if the point was (0,0) the tangent would just be a horizontal line along the x-axis. To work out the gradient we simply differentiate the curve, set this to equal 0 and solve with the given value of x. Here dy/dx = 3x2-8xSetting this to 0 and solving gives us 3(3)2-8(3)=3 and so our gradient at the point (3,-7) is 3We are now able to use the equation y-y(1)=m(x-x(1)) where m is the gradient and x(1) & y(1) are the coordinates we've been given. Rearranging we get y=3(x-3)-7y=3x-16 and this is the equation of the tangent to the curve y=x3-4x2+2 at the point (3,-7)

DW
Answered by Daniel W. Maths tutor

24295 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A 1kg mass is launched from the ground into the air at an angle of 30 degrees to the horizontal and with initial speed 25 ms^-1. Assuming negligible air resistance, how far from the starting point will the mass travel before it hits the ground?


Core 1 question: Draw the graph "y = 12 - x - x^2"


Find the integral of a^(x) where a is a constant


Differentiate 2x^3+23x^2+3x+5 and find the values of x for which the function f(x) is at either at a maximum or minimum point. (Don't need to specify which is which)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning