Find the equation of the tangent to the curve y=x^3-4x^2+2 at the point (3,-7)

y=x3-4x2+2A tangent to a curve at a specific point along the line will have excatly the same gradient as the curve at that point. For example if the point was (0,0) the tangent would just be a horizontal line along the x-axis. To work out the gradient we simply differentiate the curve, set this to equal 0 and solve with the given value of x. Here dy/dx = 3x2-8xSetting this to 0 and solving gives us 3(3)2-8(3)=3 and so our gradient at the point (3,-7) is 3We are now able to use the equation y-y(1)=m(x-x(1)) where m is the gradient and x(1) & y(1) are the coordinates we've been given. Rearranging we get y=3(x-3)-7y=3x-16 and this is the equation of the tangent to the curve y=x3-4x2+2 at the point (3,-7)

DW
Answered by Daniel W. Maths tutor

24479 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) Point A(6,7,2) lies on l1. Point B(9,16,5) also lies on l1. Find the distance between these two points. b) l2 lies in the same z plane as l1 and crosses l1 at A and is perpendicular to l1. Express l2 in vector form.


A small stone is projected verically upwards from a point O with a speed of 19.6ms^-1. Modeeling the stone as a particle moving freely under gravity find the time for which the stone is more than 14.6m above O


What is the general rule for differentiation?


Find the derivative of sin^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning