Core 3 - Modulus: Solve the equation |x-2|=|x+6|.

Modulus, also known as absolute value, takes whatever's between the |straight brackets| and makes it positive. For example, |3|=3, and |-3|=3. Interestingly, if you have any real number x, then |x|=sqrt(x2). Try putting some numbers in and see!We can't solve a modulus question until we get rid of the straight brackets, but this little trick will do the job every time. If we square both sides of the modulus equation in the last paragraph, we get |x|2=x2. So modulus brackets disappear when we square both sides of our equation. Let's try it...|x-2|2=|x+6|2(x-2)2=(x+6)2x2-4x+4=x2+12x+36-16x=32x=-2This trick is great, because the xterms cancel out and there's no quadratic equation to mess about with. Beware though, this will not be the case in all questions - if you get a quadratic equation to solve, you may end up with more than one solution. Try these bonus questions and see for yourself:(1) Solve the equation |x+4|=|x-5|.​(2) Solve the equation |x-3|=|2x|.​(3) Solve the equation |3x-1|=|3-x|.​

MF
Answered by Michael F. Maths tutor

31179 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A function is defined parametrically as x = 4 sin(3t), y = 2 cos(3t). Find and simplify d^2 y/dx^2 in terms of t and y.


Differentiate "sin(2x)"


Using transformation rules and your knowledge of trigonometric functions, draw the graph y=2sin(2x)


Given an integral of a function parametrized with respect to an integer index n, prove a given recursive identity and use this to evaluate the integral for a specific value of n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning