How do I evaluate composite functions?

Suppose you have 2 functions: f(x) = 3x2, g(x) = log3(x). These are arbitrary, any functions would work. Evaluate f(g(x)): let y = log3(x) ( = g(x) ), then f(g(x)) = f(y) = 3y2 = 3[log3(x)]2.

The part that people tend to find difficult is remembering what it means to apply a function. A simple subsitution makes this much easier. Whilst the above situation makes it seem easy, consider how much more confusing it could be if f(x) = [x7 + 9x5 + e5x + cos(x-1/3)]/[sin(ex/6) + 1729*x], and g(x) was something similarly complicated; a simple substitution can do wonders and will help prevent confusion.

SG
Answered by Seb G. Maths tutor

4519 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that A(sin θ + cos θ) + B(cos θ − sin θ) ≡ 4 sin θ, find the values of the constants A and B.


f(x)= 2x^3 -7x^2 + 2x +3. Given that (x-3) is a factor of f(x), express f(x) in a fully factorised form.


A curve has equation y = f(x) and passes through the point (4,22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7 use intergration to find f(x).


Integrate the function (3x+4)^2 using methods of expansion and substitution


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning