MYTUTOR SUBJECT ANSWERS

1181 views

A circle C with centre at the point (2, –1) passes through the point A at (4, –5).....

(a) Find an equation for the circle C.

Before tackling a question like this it is always a good idea to draw a rough sketch of all the information that's given to you. 

The general equation of a circle is x2+y2=r2, where r is the radius of the circle. 

By using the coordinates given to you for the centre of the circle and the rules of graph transformations you can come to the equation: (x-2)+ (y+1)2 = r2.

You can then use Pythagoras' Theorem to obtain a value for r2. Sketching a small triangle between the two given points can be helpful, with the hypotenuse labelled 'r'. The other lengths of the triangle can be found by subtracting respective x and y coordinates for the centre from the coordinates of point A. Applying Pythagoras' Theorem should give you a value for r2 of 20. 

(b) Find an equation of the tangent to the circle C at the point A, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

There are a few ways of going about this question but one of the simpliest is to recognise that the tangent to point A is perpendicular to the line between A and the centre of the circle. You can easily find the gradient of the line by the following: (-5 - -1) / (4 - 2)= -4 / 2 = -2. The gradient of the tangent is then equal to -1 divided by that value, so 1/2. 

Using the gradient of the tangent and the coordinates for point A you can input them into the general equation of a line, obtaining: (y + 5) = 1/2(x - 4). This can be expanded and rearranged to get an answer of: x - 2y - 14 =0

Brodie W. A Level Economics tutor, A Level Maths tutor, GCSE Maths tutor

10 months ago

Answered by Brodie, an A Level Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

323 SUBJECT SPECIALISTS

PremiumTimothy N. A Level Design & Technology tutor, GCSE Design & Technolog...
£36 /hr

Timothy N.

Degree: Architecture and Environmental Engineering (Masters) - Nottingham University

Subjects offered:Maths, Physics+ 2 more

Maths
Physics
Design & Technology
-Personal Statements-

“Hi there, I have a passion for helping students achieve, and believe that with my 200+ hours of experience, we will be able to surpass the grades you want!”

£20 /hr

Kai A.

Degree: Physics (Masters) - Bristol University

Subjects offered:Maths, Physics+ 2 more

Maths
Physics
Further Mathematics
.PAT.

“Hi! My name is Kai and I study physics at Bristol. I am happy to tutor in maths, further maths, physics and the PAT.”

Roma V. A Level Maths tutor, 13 Plus  Maths tutor, GCSE Maths tutor, ...
£26 /hr

Roma V.

Degree: Mathematics, Operational Research, Statistics and Economics (Bachelors) - Warwick University

Subjects offered:Maths, Further Mathematics + 1 more

Maths
Further Mathematics
Economics

“Top tutor from the renowned Russell university group, ready to help you improve your grades.”

About the author

Brodie W.

Currently unavailable: for regular students

Degree: Economics (Bachelors) - Durham University

Subjects offered:Maths, Economics

Maths
Economics

“About Me I am a second year economics student from St Aidan’s College, Durham University . Online tutoring is a new experience for me, but I am as keen to learn as I hope you are. I havepassion for all things economics and maths relate...”

MyTutor guarantee

|  1 completed tutorial

You may also like...

Posts by Brodie

A circle C with centre at the point (2, –1) passes through the point A at (4, –5).....

In February 2013, the proposed takeover by Barr of Britvic was referred to the Competition Commission for investigation. There were likely to have been concerns that the takeover would lead to...

Other A Level Maths questions

The curve C is defined by x^3 – (4x^2 )y = 2y^3 – 3x – 2. Find the value of dy/dx at the point (3, 1).

Find the turning point of the function y=f(x)=x^2+4x+4 and state wether it is a minimum or maximum value.

Two points have coordinates (1,-6) and (-2,3). Find the equation of the line which joins them, and their midpoint.

If cos(x)= 1/3 and x is acute, then find tan(x).

View A Level Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok