What is the tangent line to the curve y = x^3+4x+5 at the point where x = 2?

First, we must find the value of y when x = 2.

y = x3+4x+5 = (2)3+4(2)+5 = 21

Then we must find the gradient of the tangent line. This can be done by differentiating y with respect to x and substituting x = 2.

dy/dx = 3x2+4 = 3(2)2+4 = 16

Now that we have a point (2,21) and the gradient (m = 16) of our tangent line, we can find the equation of the tangent using the formula:

y-y= m(x-x1)

y-21 = 16(x-2)

y = 16x-32+21

Thus y = 16x-11 is the equation of the tangent

OT
Answered by Oliver T. Maths tutor

13313 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find minimum and maximum of x^2+1 if they exist


Show using mathematical induction that 8^n - 1 is divisible by 7 for n=1,2,3,...


How do I integrate ln(x)


A circle with centre C has equation: x^2 + y^2 + 20x - 14 y + 49 = 0. Express the circle in the form (x-a)^2 +(y-b)^2=r^2. Show that the circle touches the y-axis and crosses the x-axis in two distinct points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning