How do I integrate by parts?

The integration by parts formula takes the form:

 

int(uv') = uv - int(vu') 

 

where v' = dv/dx and u' = du/dx

A lot of the art of using the integration by parts is working out which part to differentiate and which part to integrate. I find that the most important thing to look at first is 'reducing the power', and making the second integral simpler. So I would recommend looking at differentiating anything of the form x^n, and avoiding differentiating sines, cosines, or exponentials. Other than that tip, integrating by parts is a process that just needs to be repeated until your answer pops out! 

 

CB
Answered by Chris B. Maths tutor

5350 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I simplify surds?


Integrate y=(x^2)cos(x) with respect to x.


Find the volume of revolution when the area B is rotated 2 pi radians about the x axis


Find the equation of the tangent to the curve y^3 - 4x^2 - 3xy + 25 = 0 at the point (2,-3).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning