How do I integrate by parts?

The integration by parts formula takes the form:

 

int(uv') = uv - int(vu') 

 

where v' = dv/dx and u' = du/dx

A lot of the art of using the integration by parts is working out which part to differentiate and which part to integrate. I find that the most important thing to look at first is 'reducing the power', and making the second integral simpler. So I would recommend looking at differentiating anything of the form x^n, and avoiding differentiating sines, cosines, or exponentials. Other than that tip, integrating by parts is a process that just needs to be repeated until your answer pops out! 

 

CB
Answered by Chris B. Maths tutor

4886 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

C2 differentiate 2x^2 -3x +4 with respect to X


Integrate the following function: f(x) = 8x^3 + 1/x + 5


Why does the product rule for differentiating functions work?


Find the x-coordinates of any stationary points of the equation y = x^3 - 2x + 4/x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences