How do I integrate by parts?

The integration by parts formula takes the form:

 

int(uv') = uv - int(vu') 

 

where v' = dv/dx and u' = du/dx

A lot of the art of using the integration by parts is working out which part to differentiate and which part to integrate. I find that the most important thing to look at first is 'reducing the power', and making the second integral simpler. So I would recommend looking at differentiating anything of the form x^n, and avoiding differentiating sines, cosines, or exponentials. Other than that tip, integrating by parts is a process that just needs to be repeated until your answer pops out! 

 

CB
Answered by Chris B. Maths tutor

5096 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(Core 2) Show that the region bounded by the curve y = 7x+ 6 - (1/x^2), the x axis and the lines x = 1 and x = 2 equals 16


Proof by Induction - "What's the point if we already know the answer?"


Edexcel January 2007 - Question 4 (Rates and Differential Equations)


(The question is too long so it's marked at the top of the answer space, sorry for any inconveniences)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning