Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.

To solve this problem, we must first differentiate:

Identify that we are able to use the product rule as our expression is of the form y = f(x)g(x) where f(x) = e^(2- x) and g(x) = ln(3x- 2). 

Hence f'(x) = -e^(2- x) and g'(x) = 3/(3x- 2)

By the product rule, dy/dx = f(x)g'(x) + f'(x)g(x) = 3e^(2- x)/(3x- 2) - e^(2- x)ln(3x- 2).

When we substitute x = 2 into this equation, we get that dy/dx = 3/4 - ln(4), which is our final answer.

JC
Answered by Joe C. Maths tutor

9510 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y(x)=x^2 + 2x + 1, find the turning point and classify it as minimum or maximum.


Show that r^2(r + 1)^2 - r^2(r - 1)^2 ≡ 4r^3.


Differentiate x^2+4x+9.


Differentiate: y = 3x^2 + 4x + 1 -4x^-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences