Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.

To solve this problem, we must first differentiate:

Identify that we are able to use the product rule as our expression is of the form y = f(x)g(x) where f(x) = e^(2- x) and g(x) = ln(3x- 2). 

Hence f'(x) = -e^(2- x) and g'(x) = 3/(3x- 2)

By the product rule, dy/dx = f(x)g'(x) + f'(x)g(x) = 3e^(2- x)/(3x- 2) - e^(2- x)ln(3x- 2).

When we substitute x = 2 into this equation, we get that dy/dx = 3/4 - ln(4), which is our final answer.

JC
Answered by Joe C. Maths tutor

10117 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 3sin^2(x) + sin(x) + 8 = 9cos^2(x), -180<X<180. Then find smallest positive solution of 3sin^2(2O-30) + sin(2O-30) + 8 = 9cos^2(2O-30).


Differentiate: f(x)=2(sin(2x))^2 with respect to x, and evaluate as a single trigonometric function.


a) i) find dy/dx of y = 3x^4 - 8x^3 - 3 ii) then find d^2y/dx^2 b) verify that x=2 at a stationary point on the curve c c) is this point a minima or a maxima


Find exact solution to 2ln(2x+1) - 10 =0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning