Use the chain rule to differentiate y=(x-3)^(-3)

Hint: the chain rule states that for y=u(x) ^a, the derivative will be dy/dx = dy/du * du/dxSo we just need to find dy/du and du/dx!In this case u(x)=x-3, so du/dx = 1.from y=u^(-3), dy/du = -3u^(-4).This means we know dy/dx = -3u^(-4) * 1Converting from u to x, we get dy/dx = -3 (x-3)^(-4) .... done! 

RT
Answered by Rosemary T. Maths tutor

5199 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(A-Level) Find the coordinate of the stationary point of the curve y = 2x + 27/x^2


Solving 2tan(x) - 3sin(x) = 0 for -pi ≤ x < pi


Find all the stationary points of the curve: y = (2/3)x^3 – (1/2)x^2 – 3x + 7/6 and determine their classifications.


Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning