Differentiating (x^2)(sinx) Using the Product Rule

Firstly, what is the product rule? What does it actually say? Well, it tells us how to differentiate a function of the form uv - the product of the functions u and v. If y = uv, the product rule says:

dy/dx = (du/dx)v + u(dv/dx)

So you differentiate the first bit, leaving the second part alone - giving you (du/dx)v. Then, you differentiate the second bit, leaving the first alone, - giving you u(dv/dx). And then you just add the two results to get dy/dx.

Let's look at applying this to the example in the question, trying to differentiate this: y = (x^2)(sinx)

We can see that y is a product of two functions, x^2 and sinx. Using the process above, we differentiate the first part, x^2, and leave sinx alone. That gives us (2x)(sinx). Then, we differentiate the second bit, sinx, and leave x^2 alone, and that gives us (x^2)(cosx). Then we just add the two together: (2x)(sinx) + (x^2)(cosx). So from that calculation we've shown that

dy/dx = (2x)(sinx) + (x^2)(cosx)

EM
Answered by Edward M. Maths tutor

5255 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express the fraction (p+q)/(p-q) in the form m+n√2, where p=3-2√2 and q=2-√2.


Find the integral of (sinxcos^2x) dx


Solve 4x/(x+1) - 3/(2x+1) = 1


You have a five-litres jug, a three-litres jug, and unlimited supply of water. How would you come up with exactly four litres of water (with no measuring cup)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning