How do I find the molecule from the 1H NMR spectrum?

(Note: proton and 1H+ are the same thing)

1. Draw a table with the following headings:

δ / ppm, integral, splitting, observations

2. Count how many peaks there are in the spectrum. (Doublets, triplets etc. count as one peak). This is how many proton environments there are.

3. Record the chemical shifts for each peak under δ / ppm. Using the data sheet (provided by your exam board), write down the possible functional group(s) for that shift under observations. (Usually you will have other forms of analysis to help assign the functional groups.)

4. Record the value of the integral/ measure their relative heights. This is the ratio of protons in each environment. Under observations, note that this is the probable number of hydrogens in that environment.

5. Record the splitting pattern. From this you know how many hydrogens are on adjacent carbon atoms - record this under observations. Remember the n + 1 rule. i.e. doublet = 1, triplet = 2 etc. and a doublet of triplets is -CHR2 and -CH2R.

6. Now it is simply a jigsaw puzzle. You have all the components and need to arrange them to fit with your above observations. Don't forget to look for lines of symmetry if there are a high number of hydrogens in the same environment. The more practice you get, the quicker you will be able to answer these questions.

DD
Answered by Daisy D. Chemistry tutor

4060 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Please can you explain E/Z isomers?


Explain how chromatography is used to separate components in a mixture.


Explain why alkenes can have stereoisomers


0.250 g of a hydrocarbon known to contain carbon, hydrogen and oxygen was subject to complete combustion and produced 0.3664 g of CO2 and 0.1500 g of H2O. What is the empirical formula of this hydrocarbon?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning