Differentiate: y = sin(2x).

Using the chain rule with u = 2x:

y = sin(2x) becomes y = sin(u)

dy/dx = dy/du * du/dx

dy/du = cos(u)

du/dx = 2

So dy/dx = dy/du * du/dx = 2 cos(u).

SB
Answered by Samuel B. Maths tutor

18982 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


1)Simplify sqrt 98 - sqrt 32, givimg your answer in the form k sqrt 2 where k is an integer.


Two particles, A and B, are moving directly towards each other on a straight line with speeds of 6 m/s and 8 m/s respectively. The mass of A is 3 kg, and the mass of B is 2 kg. They collide to form a single particle of speed "v" m/s. Find v.


A curve has parametric equations x= 2sin(t) , y= cos(2t) + 2sin(t) for -1/2 π≤t≤ 1/2π , show that dy/dx = - 2sin(t)+ 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning