G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244

First combine the two functions so that we have an equation for a to solve:

G(h(a)) = (3^x)^3 + 1 = 3^(3x) + 1 = 244

which gives

3^(3x) = 243

Now we can use logarithms in order to solve the equation

log(3^(3x)) = log(243)

but log(3^(3x))=3x*log(3)

so we have x = (log(243))/(3*log(3))

and if we enter this into a calculator we find that x=5/3

JS
Answered by Josephine S. Maths tutor

4386 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that 1 + tan^2 x = sec^2 x


find the integral of ((3x-2)/(6x^2-8x+3)) with respect to x between x=2 and x=1. (hint use substitution u=denominator)


Differentiate x^5 + 3x^2 - 17 with respect to x


How would I go about solving 3(x-2) = x+7?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning