What is chirality? Why is it seen in amino acids?

All amino acids except glycine are chiral molecules. This is also known as optical isomerism.

This means that they form isomers that are non-superimposable mirror images of each other. When drawing these draw a dotted line (the plane) but imagine it is a mirror. Draw the alpha-carbon in the middle and the 4 bonded groups. Then on the other side draw what you would expect the reflection to look like. You can always use an actual mirror the first time or to check your image. The number of isomers depends on the number of chiral carbons (aka chiral centres).

In amino acids, the chiral carbon is the alpha-carbon that is bonded to a hydrogen, amino group, carboxyl group and R-group. As it is bonded to 4 different atoms or groups of atoms it shows chirality and has two optical isomers.

Glycine is the exception because its R-group is a hydrogen so it is not bonded to 4 different groups of atoms and will not produce isomers that are non-superimposable mirror images so does not demonstrate chirality.

ZC
Answered by Zoe C. Chemistry tutor

20356 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Describe how propenal, propanal and propanone can be distinguished from one another by simple chemical tests.


Name and Outline a mechanism for the formation of methylpropanoate from methanol and propanoyl chloride.


How can you work out, using the changes in oxidation numbers, which compound out of KCl, KBr and KI has the greatest reducing power?


For the equilibrium reaction PCl5(g) (equilibrium arrow)-> PCl3(g) + Cl2(g) explain the effect of increasing the concentration of Chlorine gas using the equilibrium constant.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences