How do I rationalise the denominator of a fraction?

I am going to assume you know what an irrational number is, given that that should have been taught right at the beginning the topic of surds. When I talk about a “rational” number, here I mean “whole number” or “integer”, although a rational number is a number that is not irrational.
There are two types of problem that you could come across when being asked to rationalise the denominator of a fraction:
The first type is when you are asked to rationalise a fraction which has its whole denominator under a square root. For example 1/sqrt(2) or 5/sqrt(8) etc. To rationalise the denominator here, we somehow have to square the denominator to get a whole number. However, we can’t change the value of the fraction! A great way of doing this is therefore by multiplying the fraction with denominator/denominator as you’ll notice that this is just equal to 1: Let’s say we had the fraction n/d (n for numerator, and d for denominator), if we multiply this by d/d, we get nd/d2 (which is still equal to our original fraction). If ‘d’ was irrational, e.g. d=sqrt(2), then d2 would be rational, e.g. (sqrt(2))2=2, and therefore we have successfully rationalised the denominator! For example, we could multiply 1/sqrt(2) by sqrt(2)/sqrt(2) to get sqrt(2)/( sqrt(2))2 = sqrt(2)/2, or 5/sqrt(8) by sqrt(8)/ sqrt(8) to get 5sqrt(8)/(sqrt(8))2 = 5sqrt(8)/8.
The second type is a little trickier as it relies on a concept we call “the difference of two squares”. First, let’s consider (x+y)(x-y) = x2-y2; this result is known as “the difference of two squares”, and it is incredibly useful because if either ‘x’ or ‘y’ were irrational, then we now know that (x+y)(x-y) is rational. For example, if x is irrational (e.g. x=sqrt(2)) and y is rational (e.g. y=3), then (x+y)(x-y)= x2-y2 =(sqrt(2))2-32=2-9=-7, or if x is rational (e.g. x=4) and y is irrational (e.g. y=sqrt(5)), then (x+y)(x-y)= x2-y2=42-(sqrt(5))2=15-5=11. Now let’s return to the second type of problem: you could be asked to rationalise the denominator of a fraction whose denominator comprises of a rational number added to a whole number, for example 1/(1+sqrt(2)) or 3/(sqrt(3)-5) etc. This is definitely more tricky than the first type of problem, but here is where we use what we’ve just learned about “the difference of two squares” to make life a lot easier for us: The denominators of these fractions look a lot like the examples I gave for (x+y) or (x-y) (so 1+sqrt(2) is just (x+y) where x=1 and y=sqrt(2) etc.) so, we probably want to find a way to multiply the denominator of the fraction by the ‘opposite form’ in order to rationalise it. For example, multiplying (1+sqrt(2)) by (1-sqrt(2)) gives us the difference of two squares: 12-(sqrt(2))2=1-2=-1, and multiplying (sqrt(3)-5) by (sqrt(3)+5) = (sqrt(3))2-52=3-25=-22. Now we have a way of turning the denominator into a whole number, we are back to thinking about how we can do this without changing the value of the fraction. Using our trick from the first type, you can see that, if we were given a fraction a/(b+sqrt(c)), then multiplying it by (b-sqrt(c))/ (b-sqrt(c)) wouldn’t change the value ( as (b-sqrt(c))/ (b-sqrt(c))=1) but gives us b2-(sqrt(c))2 on the bottom, which is b2-c, which is a whole number! Going back to my earlier examples, 1/(1+sqrt(2)) x(1-sqrt(2))/ (1-sqrt(2)) = (1-sqrt(2))/-1 = sqrt(2)-1, and 3/(sqrt(3)-5) x(sqrt(3)+5)/ (sqrt(3)+5)=3(sqrt(3)+5)/-22 = (3sqrt(3)+15)/-22 =(-3sqrt(3)-15)/22.

Answered by Andrew D. Maths tutor

5430 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The sides of a right triangle are equal to A=3 cm, B=4 cm. The hypotenuse of a second triangle similar to the first one is 15 cm. Find sides of the second triangle.


Factorise the expression: 8x + 32


p and q are two numbers each greater than zero. √(p^2 + 5q) = 8 and √(p^2 – 3q) = 6. Find the values of p and q.


James wins the lottery and gets £200,000. He decides to spend 10% of his winnings and invest the rest. From the money he has invested, he receives interest of 3% per year. How much money does James have after 5 years (to the nearest pound)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy