Given that dy/dx=6-8x+x^4 and that x=1 when y=4. Find an expression for y in terms of x.

Fristly, we should integrate the whole equation,

y=∫ 6-8x+x^4 dx

y=6x-4x^2+x^5/5+C

Then, subsitituting values to find the C,

4=61-41^2+1^5/5+C

4=6-4+1/5+C

4=11/5+C

So, C=9/5.

Hence, y=6x-4x^2+x^5/5+9/5.

PL
Answered by Paine L. Maths tutor

5970 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 2x^2 + 4


Solve the following simultaneous equations: y-3x+2=0, y^2-x-6x^2=0


A curve has equation 2(x^2)+3x+10. What is the gradient of the curve at x=3


Consider the functions f(x) = −x^3 + 2x^2 + 3x and g(x) = −x^3 + 3x^2 − x + 3. (a) Find df/dx (x) and hence show that f(x) has turning points at when x = 2 /3 ± √ 13/ 3 . [5] (b) Find the points where f(x) and g(x) intersect. [4]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning