How can I differentiate x^2+2y=y^2+4 with respect to x?

To differentiate this kind of expression you would need to use implicit differentiation. 

Although it may sound new, you already have all the skills you need to be able to do it. We will differentiate both sides of the expression. 

We will treat the x's as normal. When we encounter terms with y's in them, we will differentiate these terms and multiply each of them by 'dy/dx'. 

So, it will look like this.

Differentiating both sides, we get:

2x+2dy/dx=2ydy/dx

No, to get the derivative, we will simply rearrange the terms, solving for dy/dx:

2dy/dx-2ydy/dx=-2x

(2-2y)*dy/dx=-2x

dy/dx=-2x/(2-2y)

dy/dx=-x/(1-y)

dy/dx=1/(y-1)

Hence, our soultion is dy/dx=1/(y-1).

MS
Answered by Margarita S. Maths tutor

5574 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 5cos(3x - 1) with respect to x


Find the equation of the tangent to the curve y = 2 ln(2e - x) at the point on the curve where x = e.


Simplify (7+sqrt(5))/(sqrt(5)-1), leaving the answer in the form a+b*sqrt(5)


Consider the function y = x.sin(x); differentiate the function with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning