Find the gradient of the line 4x+9y=10.

There are two approaches to this problem.

Firstly, you could rearrange the equation so that you have the general equation of a line, y=mx+c, where m is the gradient that you are looking for! When we rearrange the equation, we get y=-4/9x+10/9 so the gradient is -4/9.

Also, we can use implicit differentiation to get the solution. We do this by differentiating both sides of the equation with respect to x. This gives us 4+9dy/dx=0. This can be rearranged to give dy/dx=-4/9. As we know the first derivative is the gradient - we can say the gradient of the line is -4/9.

DS
Answered by Dan S. Maths tutor

4599 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express cos2x in the form a*cos^2(x) + b and hence show that the integral of cos^2(x) between 0 and pi/2 is equal to pi/a.


How do you go about differentiating a^x functions?


integrate x^2 + ln(x)


Find dy/dx at t=3, where x=t^3-5t^2+5t and y=2t^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning