Find the gradient of the line 4x+9y=10.

There are two approaches to this problem.

Firstly, you could rearrange the equation so that you have the general equation of a line, y=mx+c, where m is the gradient that you are looking for! When we rearrange the equation, we get y=-4/9x+10/9 so the gradient is -4/9.

Also, we can use implicit differentiation to get the solution. We do this by differentiating both sides of the equation with respect to x. This gives us 4+9dy/dx=0. This can be rearranged to give dy/dx=-4/9. As we know the first derivative is the gradient - we can say the gradient of the line is -4/9.

DS
Answered by Dan S. Maths tutor

4873 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


Find the derivative of f(x)=x^2log(2x)


Using mathematical induction, prove De Moivre's Theorem.


Edexcel C1 2015 Q10. A curve with equation y = f (x) passes through the point (4, 9). Given that f′(x)=3x^(1/2)-9/(4x^(1/2))+2. Find f(x), giving each term in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning