Given that 4(cosec x)^2 - (cot x)^2 = k, express sec x in terms of k.

This question makes good use of the trigonometric identities tan2x + 1 = sec2x and 1 + cot2x = cosec2x which can be easily recited in the exam by using the identity sin2x + cos2x = 1 and then dividing by cos2x or sin2x respectively!

Remember, the trick when it comes to solving problems such as these is just perseverance and using trial and error. Practice makes perfect!

There are many ways of solving this problem, here is one method:

4cosec2x - cot2x = k
4(1 + cot2x) - cot2x = k
4 + 3cot2x = k
3cot2x = k - 4
tan2x = 3 / (k - 4)
sec2x - 1 = 3 / (k - 4)
sec x = ( (3 / (k-4)) + 1 )1/2

DS
Answered by Dan S. Maths tutor

11789 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate sin(x)cos(x) with respect to x?


Given y =( 2x+1 )^0.5 and limits x = 0 , x = 1.5 , find the exact volume of the solid generated when a full rotation about the x-axis .


Solve 29cosh x – 3cosh 2x = 38 for x, giving answers in terms of natural logarithms


What is the gradient of y = xcos(x) at x=0?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences