Sketch the curve y = (x^2 - 9)(x - 2)

When it comes to curve sketching, there are a number of tests that you can do to find out crucial characteristics about the curve. They are following:

1. Setting x = 0 will give you the points at which the curve hits the y-axis. In our example we have y = (0 - 9)(0 - 2) = 18, hence it hits the y-axis at the point y = 18.

2. Setting y = 0 will give you the points at which the curve hits the x-axis. In our example we have
(x^2 - 9)(x - 2) = 0
(x + 3)(x - 3)(x - 2) = 0
Hence it hits the x-axis at x = -3, 2, 3.

3. Solving the equation dy/dx = 0 will give the x-coordinates of the stationary points of the curve. In our example we have
y = (x2 - 9)(x - 2)
y = x- 9x - 2x2 + 18
dy/dx = 3x2 - 9 - 4x
(Setting dy/dx = 0)
3x2 - 4x - 9 = 0
(This can be solved using the quadratic formula)
x = ( 4 +- (16 - 43(-9))1/2 )/( 2*3 )
...
x = -1.189 or x = 2.523
Hence there are stationary points here.

4. Finally, it is useful to see how y behaves when x tends to plus infinity and minus infinity. In our example, we can see that as x goes to plus infinity we also have (x- 9) goes to infinity and (x - 2) goes to infinity. As a result, y goes to plus infinity. Also, we can see that as x goes to minus infinity we have (x- 9) goes to plus infinity and (x - 2) goes to minus infinity. As a result, y goes to minus infinity.

From these tests we can gain enough information in order to sketch the curve.

DS
Answered by Dan S. Maths tutor

6614 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express the following in partial fractions: (1+2x^2)/(3x-2)(x-1)^2


An open-topped fish tank is to be made for an aquarium. It will have a square base, rectangular sides, and a volume of 60 m3. The base materials cost £15 per m2 and the sides £8 per m2. What should the height be to minimise costs?


When using the addition rule in probability, why must we subtract the "intersection" to find the "union" with the Addition Rule?


When do you use integration by parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning