Differentiate y= (2x+1)^3. [The chain rule]

For maths questions I feel that getting your head around the concepts are difficult but once achieved allow you to comfortably answer a wide range of questions. Therefore for maths tuition I think it is important to find a method that works for the student and then practice using it through multiple questions.  

Obviously it is easier to discuss concepts face-to-face however for this example I've found a four step process helps me answer questions on the chain rule. 

1) Differentiate the thing in the brackets

 y = 2x+1    -->      dy/dx = 2

2) Multiply that by the induction outside the bracket

2 X 3 = 6

3) Stick this number before the initial bracket

6(2x+1)^3

4) Minus 1 off the initial indicy

6(2x+1)^2 

So dy/dx = 6(2x+1)^2

This is just one method. There is another one substituting U into the equation and then saying [du/dx X dy/du = dy/dx]. I would go through both methods with the students so they can use the one that works for them. 

JJ
Answered by James J. Maths tutor

17303 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equations: x=2sin(t) and y=1-cos(2t). Find dy/dx at the point where t=pi/6


A tunnel has height, h, (in metres) given by h=14-x^2 where x is the horizontal distance from the centre of the tunnel. Find the cross sectional area of the tunnel. Also find the maximum height of a truck passing through the tunnel that is 4m wide.


A curve passes through the point (4, 8) and satisfies the differential equation dy/dx = 1/ (2x + rootx) , Use a step-by-step method with a step length of 0.3 to estimate the value of y at x = 4.6 . Give your answer to four decimal places.


How do I find the root of a quadratic equation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences