Differentiate y= (2x+1)^3. [The chain rule]

For maths questions I feel that getting your head around the concepts are difficult but once achieved allow you to comfortably answer a wide range of questions. Therefore for maths tuition I think it is important to find a method that works for the student and then practice using it through multiple questions.  

Obviously it is easier to discuss concepts face-to-face however for this example I've found a four step process helps me answer questions on the chain rule. 

1) Differentiate the thing in the brackets

 y = 2x+1    -->      dy/dx = 2

2) Multiply that by the induction outside the bracket

2 X 3 = 6

3) Stick this number before the initial bracket

6(2x+1)^3

4) Minus 1 off the initial indicy

6(2x+1)^2 

So dy/dx = 6(2x+1)^2

This is just one method. There is another one substituting U into the equation and then saying [du/dx X dy/du = dy/dx]. I would go through both methods with the students so they can use the one that works for them. 

JJ
Answered by James J. Maths tutor

17828 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve |3x+1| = 1


y = x*(x-2)^-1/2. Prove dy\dx = (x-4)/2*(x-2)^3/2


f(x)=ln(3x+1), x>0 and g(x)=d/dx(f(x)), x>0, find expressions for f^-1 and g


Differentiate with respect to x, y = (x^3)*ln(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences