Find the derivative of f where f(x)=a^x.

This is a difficult question that you only need to know the result of.However, it's a good exercise to derive it. 

Starting with f(x)=ax we can take the natural logarithm of both sides (so we can use one of its properties).

This gives us ln(f(x))=ln(ax), from the natural logarithms properties we know this is equal to ln(f(x))=x*ln(a).

Now using the chain rule we can differentiate both sides,

d(ln(f(x)))/dx= f'(x)/f(x), d(x*ln(a))/dx=ln(a)

so we now have f'(x)/f(x)=ln(a). Recalling that f(x)=ax this gives us the answer,

f'(x)=axln(a).

LR
Answered by Larry R. Maths tutor

4404 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) Simplify 2ln(2x+1) - 10 = 0 b) Simplify 3^(x)*e^(4x) = e^(7)


Differentiate y = arcsin(x) with respect to x


A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


How do I do implicit differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning