How do I use the chain rule for differentiation?

The chain rule is used when we have a function in the form f(g(x)).

For example sin(x^3). [In this case, f(x) = sin(x) and g(x) = x^3]

The chain rule says that the derivative of f(g(x)) is g'(x)*f'(g(x)). 

For our example:

g'(x) = 3x^2 and f'(x) = cos(x). So the derivative will be 3x^2*cos(x^3).

TK
Answered by Tom K. Maths tutor

5213 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you express (11+x-x^2)/[(x+1)(x-2)^2] in terms of partial fractions?


Consider the function f (x) = (2/3) x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient: (a) find f'(x) and f''(x) and (b) if you know that f(x) has a stationary point at x = 2, use this information to find b.


How do I differentiate a function of x and y with respect to x?


find the definite integral between limits 1 and 2 of (4x^3+1)/(x^4+x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning