How do I use the chain rule for differentiation?

The chain rule is used when we have a function in the form f(g(x)).

For example sin(x^3). [In this case, f(x) = sin(x) and g(x) = x^3]

The chain rule says that the derivative of f(g(x)) is g'(x)*f'(g(x)). 

For our example:

g'(x) = 3x^2 and f'(x) = cos(x). So the derivative will be 3x^2*cos(x^3).

TK
Answered by Tom K. Maths tutor

4882 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the value of the definite integral (x^3 + 3x + 2) with limits x=2 and x=1


Find the equation of the tangent to the curve y = x^2-2x-3 at x=-1


The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y


State the trigonometric identities for sin2x, cos2x and tan2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning