How do I differentiate y=x^x?

y=x^x

To find the differential, dy/dx, logs of both sides must be taken:

log(y)=log(x^x)

Then using log rules, the power can be brought down, outside the log expression:

log(y) = x log(x)

This expressions can now be differentiated with respect to x, using the chain rule on the left and the product rule on the right, giving:

(1/y) * dy/dx = 1 + log(x)

Multiplying through by y gives:

dy/dx = y (1 + log(x)) 

Remember! From the start of the question y=x^x, so this can be rewritten to:

dy/dx = x^x + x^xlog(x)

 

PL
Answered by Pascal L. Maths tutor

15493 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: i) y=x^3ln(2x) ii) y=(x+sin(2x))^3


The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) dy/dx (ii) d^2y/dx^2 (3 marks) (b) Verify that C has a stationary point when x = 2 (2marks) (c) Determine the nature of this stationary point, giving a reason for your answer. (2)


Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


How do I sketch the graph y = (x^2 + 4*x + 2)/(3*x + 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning