How do I differentiate y=x^x?

y=x^x

To find the differential, dy/dx, logs of both sides must be taken:

log(y)=log(x^x)

Then using log rules, the power can be brought down, outside the log expression:

log(y) = x log(x)

This expressions can now be differentiated with respect to x, using the chain rule on the left and the product rule on the right, giving:

(1/y) * dy/dx = 1 + log(x)

Multiplying through by y gives:

dy/dx = y (1 + log(x)) 

Remember! From the start of the question y=x^x, so this can be rewritten to:

dy/dx = x^x + x^xlog(x)

 

PL
Answered by Pascal L. Maths tutor

15710 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx if y= sinx/2x+1


Integrate y with respect to x, where y = cos(x)/[1+tan^2(x)]


How would you express (11+x-x^2)/[(x+1)(x-2)^2] in terms of partial fractions?


If f(x)=(4x^2)-(8x)+3, find the gradient of y=f(x) at the point (0.5,0)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning