x = 0.045 (45 recurring). Prove algebraically that x can be written as 1/22

x=0.045 (45 recurring)

10x = 0.45 (45 recurring)

100x = 4.54 (54 recurring)

1000x = 45.45 (45 recurring)

To get rid of the decimals:

1000x-10x = 45.45 - 0.45

990x = 45

x = 45/990

x = 9/198 (simplify by dividing by 5)

x = 1/22 (simplify by dividing 9)

JT
Answered by John T. Maths tutor

59431 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the solutions to the following equation x^2 - 5*x + 6 = 0


Find the inverse of y = 2x+1/ x-1


Solve the two simulatneous equations x^2+y^2=18 and x-y=3


A book was reduced by 35% in a sale. It's new price is £16. What was the original price ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning