Given that d/dx(cosx)=-sinx show that d/dx(secx)=secx(tanx)

let y=sec(x) = 1/(cos(X)) = cos(x)-1

Thus dy/dx = -1(cos(x))-2(-sinx) = sin(x)/(cos(x))2

= 1/cos(x)  x  sin(x)/cos(x)

=sec(x)tan(x)

OD
Answered by Owain D. Maths tutor

13053 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y^3+2xy+x^2-5=0. Find dy/dx.


How would I solve the equation 25^x = 5^(4x+1)?


State the trigonometric identities for sin2x, cos2x and tan2x


The point P lies on the curve C: y=f(x) where f(x)=x^3-2x^2+6x-12 and has x coordinate 1. Find the equation of the line normal to C which passes through P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning