Using Integration by Parts, find the indefinite integral of ln(x), and hence show that the integral of ln(x) between 2 and 4 is ln(a) - b where a and b are to be found

Using integration by parts, we can re-write the integral of ln(x) as (xln(x) - int(x(1/x))) = x*ln(x) - x

Therefore, evaluating between 2 and 4 gives us (4ln(4) - 4) - (2ln(2) - 2) = 2ln(16/2) - 4 + 2 = ln(64) - 2. So a = 64 and b = 2

Answered by Kyle R. Maths tutor

2729 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that: y = 3x^2 + 6x^1/3 + (2x^3 - 7)/(3x^1/2), x > 0 Find dy/dx, give each term in its simplest form


What is calculus?


How do I know which SUVAT equation to use?


The variable x=t^2 and the variable y=2t. What is dy/dx in terms of t?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy