Integrate 1/(5-2x) for 3≤x≤4

You must be careful with these sorts of questions as although 1/(5-2x) is equivalent to (5-2x)^-1, when you integrate you would add one to the power and divide by the new power. But if you were to add one to (5-2x)^-1 you would get zero. Therefore, when you are integrating a fraction with a linear expression as the denominator (meaning a denominator where the greatest power of x is 1), it integrates to the natural logarithm (ln) of the denominator, multiplied by the differential of the denominator.So in this example, 1/(5-2x) would integrate to[ln(5-2x)/(-2)] (as 5-2x differentiates to -2) for 3≤x≤4Then you would sub in the limits of x and subtract as usual:ln(5-2(4))/(-2) - ln(5-2(3))/(-2)= -1/2ln(5-8) - -1/2ln(5-6) Remeber that you cannot take the ln of a negative number, so it is best to write it as: = -1/2ln|-3| - -1/2ln|-1|= -1/2ln(3) - -1/2ln(1)ln(1)=0 so our answer is-1/2ln3  

ES
Answered by Emily-Louisa S. Maths tutor

7040 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is described by f(x) = x^2 + 2x. A second curve is described by g(x) = x^2 -5x + 7. Find the point (s) where both curves intersect.


Differentiate y = (3x − 2)^4


Find the general solution of the differential equation: d^2x/dt^2 + 5dx/dt + 6x = 2cos(t) - sin(t)


The line AB has equation 5x + 3y + 3 = 0. The point with coordinates (2k + 3, 4 -3k) lies on the line AB. How do you find the value of k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning