Integrate 1/(5-2x) for 3≤x≤4

You must be careful with these sorts of questions as although 1/(5-2x) is equivalent to (5-2x)^-1, when you integrate you would add one to the power and divide by the new power. But if you were to add one to (5-2x)^-1 you would get zero. Therefore, when you are integrating a fraction with a linear expression as the denominator (meaning a denominator where the greatest power of x is 1), it integrates to the natural logarithm (ln) of the denominator, multiplied by the differential of the denominator.So in this example, 1/(5-2x) would integrate to[ln(5-2x)/(-2)] (as 5-2x differentiates to -2) for 3≤x≤4Then you would sub in the limits of x and subtract as usual:ln(5-2(4))/(-2) - ln(5-2(3))/(-2)= -1/2ln(5-8) - -1/2ln(5-6) Remeber that you cannot take the ln of a negative number, so it is best to write it as: = -1/2ln|-3| - -1/2ln|-1|= -1/2ln(3) - -1/2ln(1)ln(1)=0 so our answer is-1/2ln3  

ES
Answered by Emily-Louisa S. Maths tutor

6940 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

g(x) = ( x / (x+3) ) + ( 3(2x+1) / (x^2 + x - 6) ). Show that this can be simplified to: g(x) = (x+1) / (x-2).


At time t = 0 a particle leaves the origin and moves along the x-axis. At time t seconds, the velocity of P is v m/s in the positive x direction, where v=4t^2–13t+2. How far does it travel between the times t1 and t2 at which it is at rest?


Intergrate 8x^3 + 6x^(1/2) -5 with respect to x


Find a solution for the differential equation dy/dx=exp(-y)*sin2x which passes through the origin.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning