How do I integrate cos^2(x)?

The key to solving any integral of this form is to use the cosine rule:

cos(2x) = cos2(x) - sin2(x) = 2cos2(x) - 1 = 1 - 2sin2(x)

All of these forms are really helpful when solving problems such as this, and it's great if you can remmeber them, though if you get stuck in an exam, they can all be derived from the addition formulae that are probably on your fomula sheet!

So, using the above idenities, we know that:

2cos2(x) - 1 = cos(2x)

2cos2(x) = cos(2x) + 1

cos2(x) = (cos(2x) + 1)/2

So instead, we perform the integral of (cos(2x) + 1)/2, which we already know how to do.

=> (sin(2x))/4 + x/2

DF
Answered by Daniel F. Maths tutor

38228 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove the identity (sin2x)/(1+(tanx)^2) = 2sinx(cosx)^3


(The question is too long so it's marked at the top of the answer space, sorry for any inconveniences)


The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.


The straight line L1 passes through the points (–1, 3) and (11, 12). Find an equation for L1 in the form ax + by + c = 0, where a, b and c are integers


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning