How do I integrate log(x) or ln(x)?

The integral of log(x) is not necessarily straight-forward. Though we can use the fact that d/dx(log(x)) = 1/x to help us.

Rather than simply trying to integrate log(x), we can use integration by parts on 1 x log(x) (as in 'one times' log(x)).

So we can differentiate the log(x) part and integrate the 1 part to give:

xlog(x) - ∫ 1 dx = xlog(x) - x

Note: if the middle step isn't clear, we can write it more explicitly as

u = log(x)  v' = 1

u' = 1/x     v = x

Where the rule for integration by parts is written as:

uv' = uv - ∫ u'v    ,  where u and v are functions of x

DF
Answered by Daniel F. Maths tutor

14254 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I choose which term do I differentiate/integrate when I am integrating by parts


What are radians, why can't we just use degrees?


Find two values of k, such that the line y = kx + 2 is tangent to the curve y = x^2 + 4x + 3


Solve the complex equation z^3 + 32 + 32i(sqrt(3)) = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences