How do I integrate log(x) or ln(x)?

The integral of log(x) is not necessarily straight-forward. Though we can use the fact that d/dx(log(x)) = 1/x to help us.

Rather than simply trying to integrate log(x), we can use integration by parts on 1 x log(x) (as in 'one times' log(x)).

So we can differentiate the log(x) part and integrate the 1 part to give:

xlog(x) - ∫ 1 dx = xlog(x) - x

Note: if the middle step isn't clear, we can write it more explicitly as

u = log(x)  v' = 1

u' = 1/x     v = x

Where the rule for integration by parts is written as:

uv' = uv - ∫ u'v    ,  where u and v are functions of x

DF
Answered by Daniel F. Maths tutor

15586 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact value of dy/dx at (-2,4) of the curve C: 4x^2 -y^2 + 6xy + 2^y = 0


How to integrate and differentiate ((3/x^2)+4x^5+3)


Differentiate, with respect to x, e^3x + ln 2x,


Use the chain rule to differentiate y=(x-3)^(-3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning