Prove that the d(tan(x))/dx is equal to sec^2(x).

You can express tan(x) as sin(x)/cos(x). Therefore, tan(x)= sin(x)/ cos(x)The quotient rule can be applied here as there is a function of x in the numerator and denominator.Quotient Rule: (v*(du/dx) - u*(dv/dx))/v2Let u =sin(x) and v=cos(x) and hence (du/dx)= cos(x) and (dv/dx)= -sin(x).Therefore:d(tan(x))/dx= (cos(x)cos(x))-(sin(x)(-sin(x))/(cos2(x))=(cos2(x)+sin2(x))/(cos2(x))Using the trig identity, cos2(x)+sin2(x)=1, the numerator of the fraction can be tidied and heavily simplified.d(tan(x))/dx= 1/(cos2(x))As 1/(cos(x)) is equal to sec(x), 1/(cos2(x)) is equal to sec2(x).

CU
Answered by Chinazam U. Maths tutor

18180 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the normal line to the curve y = 3x^3 - 6x^2 at the point (1, 4)?


Sketch the graph y=-x^3, using this sketch y=-x^(1/3)


a) Find the indefinite integral of sec^2(3x) with respect to x. b) Using integration by parts, or otherwise, find the indefinite integral of x*sec^2(3x) with respect to x.


f ( x ) = 2 x ^3 − 5 x ^2 + ax + a. Given that (x + 2) is a factor of f ( x ), find the value of the constant a. (3 marker)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning