A space probe of mass 1000kg, moving at 200m/s, explosively ejects a capsule of mass 300kg. The speed of the probe after the explosion is 250m/s. What is the velocity of the capsule?

To solve this problem, we must apply conservation of momentum. Even though there is kinetic energy being added to the probe-capsule system by the explosion, momentum will always be conserved if there are no external forces. These external forces could be, for example, air resistance or friction, but since we are in space we do not need to consider this.

We first calculate the momentum of the probe-capsule system before the explosion:

pi = 1000kg * 200 m/s = 200,000kgm/s

After ejecting the 300 kg capsule, the probe only weighs 700 kg. The total momentum is therefore:

pf = pprobe + pcapsule = 700kg * 250 m/s + 300 kg * vcapsule

Conservation of momentum requires

pf = pi

and inserting the above results yields:

700kg * 250 m/s + 300kg * vcapsule = 200,000kgm/s

vcapsule = (200,000 – 700*250)/300 m/s = 83.33 m/s

Since we have chosen velocities to be positive along the direction of motion of the probe, this means the probe and capsule must still be moving in the same direction.

AS
Answered by Alexander S. Physics tutor

7482 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is "half-life"?


What is the optimum angle to throw a snowball for maximum horizontal displacement? (Ignore air resistance, assume the snowball is thrown level with the ground. The angle is measured from the ground up)


A 4 metre long bar rotates freely around a central pivot. 3 forces act upon it: 7N down, 2m to the left of the pivot; 8N up, 1m to the left of the pivot; 4N up, 1m to the right of the pivot. Apply one additional force to place the bar in equilibrium.


There is a train A. On the roof of A is another frictionless train B of mass Mb. A mass Mc hangs off the front of A and is attached to the front of B by rope and frictionless pulley. How fast should A accelerate so that B wont fall off the roof of A.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning