A space probe of mass 1000kg, moving at 200m/s, explosively ejects a capsule of mass 300kg. The speed of the probe after the explosion is 250m/s. What is the velocity of the capsule?

To solve this problem, we must apply conservation of momentum. Even though there is kinetic energy being added to the probe-capsule system by the explosion, momentum will always be conserved if there are no external forces. These external forces could be, for example, air resistance or friction, but since we are in space we do not need to consider this.

We first calculate the momentum of the probe-capsule system before the explosion:

pi = 1000kg * 200 m/s = 200,000kgm/s

After ejecting the 300 kg capsule, the probe only weighs 700 kg. The total momentum is therefore:

pf = pprobe + pcapsule = 700kg * 250 m/s + 300 kg * vcapsule

Conservation of momentum requires

pf = pi

and inserting the above results yields:

700kg * 250 m/s + 300kg * vcapsule = 200,000kgm/s

vcapsule = (200,000 – 700*250)/300 m/s = 83.33 m/s

Since we have chosen velocities to be positive along the direction of motion of the probe, this means the probe and capsule must still be moving in the same direction.

AS
Answered by Alexander S. Physics tutor

7010 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the de Broglie wavelength? Why do we care?


A circuit with a voltage source of 18V, has 3 resistors all connected on parallel, values at 2ohms, 6ohms and 7.5ohms. Find the total circuit resistance, and then subsequently, the total current supplied and power dissipated in the curcuit.


An object is let in free fall from a platform 20m high above Earth's surface. Describe the event in terms of energy and thus determine the speed of the object when it hits ground. Air resistance is negligible and gravitational acceleration is constant.


Why is the refractive index of water bigger than that of air?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences