Solve x^2 + x -12= 0 for all values of x.

This is a quadratic equation so there are two main methods you can use to solve it- factorising and completing the square.

My preferred method and the one I will demonstrate is factorisation.

The above equation will take the form:

(x + a)(x +b) = 0

Therefore if we multiply out the brackets we get:

x^2 + (a+b)x +ab = 0

This means that

(a+b) = 1 (the coefficient of x)

and 

ab = 12

From trial and error we find the values for a and b which are 

a= -3

b= 4

So x^2 + x -12= 0 can be written as (x-3)(x+4)= 0

When we multiply by 0 we get 0 therefore

x-3 = 0 or 

x+4= 0

From rearranging the above equations we find the answer is x = 3 or x = -4

SF
Answered by Sam F. Maths tutor

12480 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The first floor of an ancient japanese tower has 150 steps. Each floor above has 5 fewer floors than the previous. So, the second floor has 145 steps, the third 140 etc. How many floors does the tower have if the final floor has 30 steps leading to it.


Work out the value 125^(-2/3) (A* Exam Q)


Find the stationary points of y = x^3 -3x^2 - 9x +5


Write down the value of 36^ 1/ 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning