Solve the simultaneous equations 2x+2y=14 and 3x-y=1

To solve these eliminations, we must eliminate either the x's or the y's. Either is possible but let us start with the y's. There is 2y in the first equation and (-1)y in the second, so we will have to multiply the second equation by 2 to ensure we have 2 and -2 lots of y in both equations. This means the second equation becomes 6x-2y=2. We can now add the two equations together to give us 8x=16. Dividing this by 8 gives us x=2. To find y, we pick either of the original equations (let's pick the first one) and substitute x=2 into to give us 4+2y=14. Subtracting 4 from both sides gives us 2y=10 and dividing by 2 finally gives us the solution y=5 (and x=2).

AS
Answered by Angus S. Maths tutor

6876 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A bottle contains 300ml of medicine, the dose for a child can be given by (m*a)/150 where m is the child's age in months and a is the adult dosage of 40ml. If you need 2 doses a day, how long will the medicine last until it's empty for a 2y/o child?


The equation 5x^2 + px + q = 0, where p and q are constants, has roots t and t+4. Show that p^2 = 20q + 400.


Simplify 3(x-5)/x^2-3x-10


How do you rearrange x = (2y+1)/(3y+4) to get y in terms of x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning