Solve the simultaneous equations 2x+2y=14 and 3x-y=1

To solve these eliminations, we must eliminate either the x's or the y's. Either is possible but let us start with the y's. There is 2y in the first equation and (-1)y in the second, so we will have to multiply the second equation by 2 to ensure we have 2 and -2 lots of y in both equations. This means the second equation becomes 6x-2y=2. We can now add the two equations together to give us 8x=16. Dividing this by 8 gives us x=2. To find y, we pick either of the original equations (let's pick the first one) and substitute x=2 into to give us 4+2y=14. Subtracting 4 from both sides gives us 2y=10 and dividing by 2 finally gives us the solution y=5 (and x=2).

AS
Answered by Angus S. Maths tutor

6694 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In 2014, Donald's weekly pay was $640. In 2015, Donald's weekly pay was $668,80. Work out the percentage increase in Donald's pay between 2014 and 2015.


The equation of the line L1 is y=4x–8. The equation of the line L2 is 3y–12x+4=0. Show that L1 and L2 are parallel.


Dividing Fractions


The straight line L1 passes through the points with coordinates (4, 6) and (12, 2) . The straight line L2 passes through the origin and has a gradient of -3. The lines L1 and L2 intersect at point P. Find the coordinates of P.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences