How do I differentiate y=(4+9x)^5 with respect to x?

The method we use to differentiate this form of equation is called the chain rule.

The chain rule is dy/dx = dy/du x du/dx

We can rememeber the right way up of the terms on the right hand side by treating them as fracions and cancelling to give dy/dx.

To use the chain rule we need to define our u. In this form of question we choose what is inside the brackets.

Let u=4+9x, this means that y=u^5.

Then by normal rules of differentiation we differentiate y and u giving:

dy/du = 5u^4   and    du/dx = 9

Then we substitue these results into the chain rule formula giving:

dy/dx = 9 x 5u^4 = 45u^4

Then we substitute u=4+9x back in to get our final answer:

dy/dx = 45(4+9x)^4

JH
Answered by Jenny H. Maths tutor

4468 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation 2x^2 + 8x + 1 = 0 has roots a and b. Write down the value of a + b, a*b and a^2 + b^2.


Integrate 10x(x^1/2 - 2)dx


Given that y = x^2 +2x + 3, find dy/dx.


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0 (a) Find (i) dy/d x (ii) d^2y/dx^2 (b) Verify that C has a stationary point when x = 4 (c) Determine the nature of this stationary point, giving a reason for your answer.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences