How do I differentiate y=(4+9x)^5 with respect to x?

The method we use to differentiate this form of equation is called the chain rule.

The chain rule is dy/dx = dy/du x du/dx

We can rememeber the right way up of the terms on the right hand side by treating them as fracions and cancelling to give dy/dx.

To use the chain rule we need to define our u. In this form of question we choose what is inside the brackets.

Let u=4+9x, this means that y=u^5.

Then by normal rules of differentiation we differentiate y and u giving:

dy/du = 5u^4   and    du/dx = 9

Then we substitue these results into the chain rule formula giving:

dy/dx = 9 x 5u^4 = 45u^4

Then we substitute u=4+9x back in to get our final answer:

dy/dx = 45(4+9x)^4

JH
Answered by Jenny H. Maths tutor

4504 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of the curve y (x)= 1/3x^3 - 5/2x^2 + 4x and classify them.


Consider the function f (x) = (2/3) x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient: (a) find f'(x) and f''(x) and (b) if you know that f(x) has a stationary point at x = 2, use this information to find b.


Given that the binomial expansion of (1+kx)^n begins 1+8x+16x^2+... a) find k and n b) for what x is this expansion valid?


Please Simplify: (2x^2+3x/(2x+3)(x-2))-(6/x^2-x-2))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences