Find the nth term of the sequence 7,11,15,19...

The nth term is a formula that allows us to find the value of a term in a sequence given its position in the sequence, whether this is the second term (n=2) or the millionth (n=1000000). In the above sequence, there is a difference of four between each term: 11-7=4, 15-11=4, etc. This means that the nth term is going to look something like 4n+6, or 4n-3, but we need to be sure of the number we are adding or subtracting at the end. The first term (n=1) is seven. So we know that 4(1) + something = 74(1)=4x1=44+something=7and subtracting 4 from both sides gives us 3. So the nth term is 4n+3. To check our answer, we can check another term. The fourth term (n=4) is 19, so putting n=4 in our formula should give 19.fourth term = 4(4)+3=16+3=19, which is what we wanted, so we can be sure that the nth term is indeed 4n+3.

JB
Answered by Joe B. Maths tutor

54099 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify 2y+3y(5y+3)


Solve these simultaneous equations (1) 12x + 3.5y = 32 (2) 8x + 3y = 24


A right angled triangle has 2 known sides measuring 3 meters, 4 meters respectively. Find the hypotenuse and the smallest angle in the triangle.


Solve the Simultaneous equation: 6x+3y=13, 14x-9y=9?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning