Differentiate the function y=(6x-1)^7

Problems of this style are solved using the chain rule.

To begin, define the quantity inside the brackets as u

u = 6x-1 such that y = u^7

It is now useful to write the chain rule. We can see

dy/dx = du/dx x dy/du

as the du 'cancel'. Now, all we need to do is differentiate two simple expressions:

du/dx = 6 and dy/du = 7u^6

Substituting these expressions back into the chain rule:

dy/dx = 42u^6

Finally, substitute into this expression to give the final answer, 

dy/dx = 42(6x-1)^6

JL
Answered by Jamie L. Maths tutor

4569 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

You're on a game show and have a choice of three boxes, in one box is £10, 000 in the other two are nothing. You pick one box, the host then opens one of the other boxes showing it's empty, should you stick or switch?


3/5 of a number is 162. Work out the number.


Find the integral of e^3x/(1+e^x) using the substitution of u=1+e^x


Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning