Differentiate the function y=(6x-1)^7

Problems of this style are solved using the chain rule.

To begin, define the quantity inside the brackets as u

u = 6x-1 such that y = u^7

It is now useful to write the chain rule. We can see

dy/dx = du/dx x dy/du

as the du 'cancel'. Now, all we need to do is differentiate two simple expressions:

du/dx = 6 and dy/du = 7u^6

Substituting these expressions back into the chain rule:

dy/dx = 42u^6

Finally, substitute into this expression to give the final answer, 

dy/dx = 42(6x-1)^6

JL
Answered by Jamie L. Maths tutor

4223 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


The region below the curve y = e^x + e^(-x) and the lines x = 0, x = ln4 is rotated 2π radians about the x-axis. Find the volume of the resulting solid.


Integrate Sin(x)Cos(x)dx.


How do you integrate ln(x) with respect to x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences