How do you solve the integral of ln(x)

This will use the process of integration by parts.

First, notice that ln(x)=ln(x)*1.

So, the integral of ln(x) is the integral of ln(x)1. The process of integration by parts is;  int(vdu/dx)dx=vu - int(dv/dx*u)dx.

Set ln(x)=v, 1=du/dx, so int(ln(x)*1)dx = ln(x)- int(1/xx)dx = xln(x)-int(1)dx = xln(x)-x+constant.

And you're done!

YP
Answered by Yaniv P. Maths tutor

4935 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the gradient of the function y=x^2+6x when y=-9


Find the two real roots of the equation x^4 - 5 = 4x^2 . Give the roots in an exact form. [4]


Prove that sqrt(2) is irrational


Integrate 2x/[(x+1)(2x-4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning